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Abstract

An iterative method is presented for the characterization of lossy piezoelectric materials in the radial resonant mode, which

provides a new formula to calculate the frequencies at which the electrical admittance is to be measured. This new method con-
siderably reduces the measurement time by separating the programs for data acquisition and for calculus. The accuracies of the
material constants for several soft and hard piezoceramic materials, covering a wide range of values of the planar coupling factor
and mechanical quality factor, were tested and it was evidenced that they depended on the type of the piezoelectric material. The

new method proved to be as accurate as, or in some cases even more accurate than, the other iterative methods. This new method
can also be applied whenever the standard method does not allow the determination of the material constants. # 2002 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

There are several standard methods used to determine
the material constants of piezoelectric ceramics,1�3 but
they ignore, to a great extent, the dielectric, piezoelectric
and elastic losses, considering these constants as real
quantities. Such an approach is accurate enough for
materials with low losses, as sometimes is the case for
PZT type materials. However, the development of
sophisticated transducers using new lossy materials or
composites, requires alternative methods for material
characterization which take into account the losses,
regardless of how low they are. Such a characterization
becomes useful even for low lossy materials, when used
at higher temperatures, since losses become important
with increasing temperature. It is also important when
resolution between series and parallel resonances is very
poor and standard methods become difficult, or even
impossible to apply. The losses of the piezoelectric
materials were taken into account by treating the material
constants as complex quantities.4 The first attempts to

measure them were made by Holland et al.5,6 The actual
methods used to determine the material constants, in
complex form, can be clasified as iterative7�9 and non-
iterative.10,11 The iterative ones use the frequency spec-
trum of the electrical immittance, within the range of
the resonance–antiresonance of the fundamental mode
only, to determine all material constants, while the
noniterative methods require some more measurements,
away from fundamental resonance, to determine the
dielectric constants at constant stress, or strain. They
also need the measurement of a set of ‘‘critical’’ fre-
quencies, in the range of the first or higher overtones,
and sometimes, even a second set, for materials with low
coupling factors (lower than 0.3), or high dielectric dis-
persion.11 For radial mode, the noniterative method is
valid only for materials with intermediate mechanical
quality factors.10

The most accurate iterative methods were elaborated
by Smits7 and Alemany et al.8,9

Smits’ method requires a judicious choice of three
frequencies where admittance (impedance) is measured,
in order to avoid the determination of the constants
with large errors. Since the frequency selection is a dif-
ficult task when measurements are performed on a large
number of samples, Smits suggested calculating these
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frequencies by using the coupling factor estimated by
standard methods.1 However, such a procedure has the
impediment of being impossible to apply for poor reso-
lution between series and parallel resonances (as is the
case of lead metaniobate, for example).
Alemany’s method eliminates this difficulty by using

another iteration to calculate the frequencies in which
the immittance is measured. This has the advantage of
being applied to any type of piezoceramic material, even
to those with very poor resolution between resonance
and antiresonance. But it has the disadvantage of being
rather slow, due to the impossibility of separating the
programs for data acquisition and for calculus, since the
frequencies at which immittance is to be measured,
during the iteration process, are calculated in the same
process. Therefore, a more rapid method seems to be
necessary, especially when measurements are carried out
as a function of temperature, since the temperature
cannot be maintained constant for a long time.
The present work proposes a new improved iterative

method to determine the material constants, in complex
form, for radial mode, which provides a new formula to
calculate the frequencies at which the electrical admit-
tance is to be measured and considerably reduces the
measurement time, by separating the programs for data
acquisition and for calculus. This new method is com-
paratively tested with Smits’ and Alemany’s methods on
several soft and hard piezoceramic materials, covering a
wide range of values of the planar coupling factor and
mechanical quality factor.

2. Measurements

The measurement technique consists in generating a
radial mode of vibration in a disc shaped piezoceramic
resonator, by sinusoidal electrical stimulation and fre-
quency sweep, by means of an HP-4194A impedance
gain/phase analyzer, controlled by a computer.
The real (conductance G) and imaginary (susceptance

B) parts of the complex electrical admitance Y are
measured as a function of frequency within the range of
resonance and antiresonance of the fundamental radial
mode and these data are stored as input resonance
spectrum, in order to check only the agreement with
output data calculated with the constants provided by
this method.
The series and parallel resonance frequencies fs and fp

corresponding to the maxima of G and R (resistance),
respectively are determined and stored together with
their corresponding values of complex admittances, Ys

and Yp. The frequencies fBmax and fBmin of maximum
and minimum of B around fs and their corresponding
admittances YBmax and YBmin are also determined and
stored. The frequencies f1,2eff are calculated with the
formula:

f1;2eff ¼
fsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� kpeff
p ð1Þ

where kpeff is given by:

keff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2p � f 2s

f 2p

s
ð2Þ

The values Y1,2eff of the electrical admittance, mea-
sured at these frequencies, are also stored. Then, the
frequency range is changed so as to include the first
overtone of the radial mode, in order to determine its
series resonance frequency fs2.
For materials with small kp and low Qm, when fs and

fp may coincide, or even may be in a reversed order,
f1,2eff cannot be calculated. Therefore, they will be
replaced by f1,2mn given by:

f1;2mn ¼
fsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� kmn

p ð3Þ

where kmn is defined as:

kmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2n � f 2m

f 2n

s
ð4Þ

with the frequencies fm and fn corresponding to the
maxima of absolute admittance and absolute impedance
respectively, the relationship fm< fs< fp< fn between the
frequencies fm, fn, fs and fp being well known.1

As one can see, the measurement procedure does not
involve the results of the iterative method, thus being
completely independent of that. It requires only the
measurement of some frequencies and admittances from
the input resonance spectrum, even for determining the
frequencies f1,2eff (or f1,2mn whenever necessary), which
is an easy task for any acquisition program. The
separation between data acquisition and processing
considerably reduces the measurement time, to a few
seconds and allows the use of a more performant ‘‘soft’’
for processing. This is the main difference between our
method and Alemany’s, which requires new measure-
ments of the admittance during the iteration process, so
that the measurements and the processing cannot be
separated and the whole program takes place in minutes.

3. Description of the method

This new method uses the following expression for the
electrical admittance Y, as a function of the oscillating
frequency f:9
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Y ¼ i
2�2fa2

t
"T33 þ 2d 2

31

c
p
11

1

2� ji 2�fa
ffiffiffiffiffiffiffiffiffiffiffiffi
�=cp11

ph i� 1

1þ �

2
66664

3
77775
ð5Þ

where a, t and � are the radius, thickness and density of
the sample, respectively and i ¼

ffiffiffiffiffiffiffi
�1

p
. The dielectric per-

mitivity "T33, the piezoelectric constant d31, the Poisson’s
ratio � and the elastic constant c

p
11, given by:

� ¼ �
sE12
sE11

ð6Þ

c
p
11 ¼

sE11

sE11
� 2

� sE12
� 2 ð7Þ

are complex quantities. The last two constants are
defined with the elastic compliances sE11 and sE12 at con-
stant field E. The complex function j1(z) of complex
variable z is given by:

j1ðzÞ ¼ zJ0ðzÞ=J1ðzÞ ð8Þ

where J0 and J1 are Bessel functions of first kind and
zeroth and first order, respectively.
The relationship (5) is derived from Eq. (117) of the

IEEE Std.,1 by substituting the planar coupling factor
kp with the formula:

kp ¼

ffiffiffi
2

p
d31ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

"T33 ðsE11 þ sE12
� q ð9Þ

in order to evidence the explicite contributions of the
dielectric, piezoelectric and elastic constants, which are
complex quantities, written, following Holland,4 as: real
part—i � imaginary part.

The iterative procedure requires initial estimations of
the elastic constants c

p
11 and �. It also requires the value

of �1in which is the first positive root of the equation:

j1ðzÞ þ � � 1 ¼ 0 ð10Þ

representing the condition of radial resonance in a loss-
less piezoceramic resonator with all material constants
as real quantities, including the function j1(z). The
Poisson’s ratio s is initially estimated as a real quantity,
�in, with no imaginary part, and is calculated, as well as
�1in, by a polynomial fit9 of the data given in Table 10 of
IEEE Std.:1

�in ¼
X4
i¼0

air
i ð11Þ

�1in ¼
X3
i¼0

bir
i ð12Þ

with ai and bi given by Table 1 of Ref. [9] and
r ¼ fs2=fs. The real part of c

p
11 is initially estimated

from the relationship:1

c
p
11in ¼ �

�dfs
�1in

� �2

ð13Þ

and the imaginary part of c
p
11, from:

c
p00

11in ¼ �
fBmin � fBmax

fx
c
p0

11in ð14Þ

Our method, as well as Smits’, is based on the
measurement of the electrical admittance Y at three
different frequencies f1, f2 and f3, in order to determine
four material constants: "T33; d31; c

p
11 and �, from Eq. (5).

It consists in two successive iterations, which both fol-
low the same algorithm, but the values of f1,f2 and the
initial estimations of c

p
11 and � are different. Thus, in the

first iteration f1, f2 are substituted by fBmax and fBmin,
respectively, and the initial estimations for � and c

p
11 are

Table 1

The values of the input constants for materials A, B, C, and D respectively

Input constants Material types

A B C D

"T33="0 1651–i 29 240–i 1.5 1144–i 0.8 167.75–i 0.5

d31(10
�12 C/N) �156.7+i 3.12 �12.7+i 0.1 �120+i 0.2 �1.719+i 0.0021

c
p
11(10

10 N/m2) 6.988+i 0.07 5.1+i 0.3 8.5+i 0.0065 13.336+i 0.0046

� 0.39+i 0.00002 0.2+i 0.001 0.31+i 0 0.25+i 0

kp 0.57–i 0.0034 0.096+i 0.0024 0.56–i 0.00053 0.0257+i 0.00001

Qm 100 17 1300 2900

fs/(fBmin �fBmax) 100 24 1310 2891

� (kg/m3) 7700 5700 7600 7200
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given by (11)–(14), whereas in the second iteration, f1,2eff
becomes f1,2 and the initial guess for c

p
11 and s are the

final values provided by the first iteration. The first
iteration is the central iteration of the method described
in details by Alemany et al.,9 except the correction of
the piezoelectric constant d31, by using the admittance
measured at fp, since in some circumstances the iteration
is not convergent.
The algorithm will be further described. With initial

estimations of c
p
11 and �, the electrical admittance from

(5) becomes linear in "T33 and d2
31. Measuring Y at fre-

quencies f1 and f2, a linear system of two equations is
obtained. By solving it, "T33 and c

p
11, are determined.

Then, better aproximations of c
p
11 and � are obtained,

by using the experimental value of Y measured at f3
which is fs in both iterations. First, c

p
11 is determined

from:

c
p
11 ¼ �

�dfs
�1

� �2

ð15Þ

after calculating the complex argument �1 of the com-
plex function j1(�1), by using the preceeding values of
the four constants. Second, a better approximation of s
is obtained at the same frequency fs, with the new values
of c

p
11, and j1(�1) and the previous ones of "T33 and d31.

With the new values of c
p
11 and �, (as initial guess) the

iterative procedure restarts and is repeated until the cut-off
criterion:

c
p
11f � c

p
11i

��� ���
c
p
11f

��� ��� 4 10�8 ð16Þ

is fulifiled. Here, c
p
11i is the value of c

p
11, used at the

beginning of the algorithm, and c
p
11f is provided by the

algorithm.
Constants c

p
11 and � are calculated from (5) at fs since

they determine this frequency, according to (10) and
(13). The series resonance frequency corresponds to
mechanical resonance and, therefore, it is naturally to
calculate the elastic constants at this frequency. If kp is
large, than a large amount of input energy is converted
to elastic energy, thus allowing an accurate determina-
tion of the elastic constants around fs, which is not pos-
sible for dielectric constant, since the dielectric energy is
small compared to the elastic energy. This happens even
at small kp and high mechanical quality factor Qm, when
mechanical losses are very small. Therefore, it is neces-
sary to determine the dielectric constant far from fs,
where the dielectric energy becomes dominant. This is
accomplished in the second iteration, where "T33 is calcu-
lated at frequencies f1,2eff, with high accuracy, after it
was determined with large errors, at fBmax and fBmin in
the first iteration. The accuracy of the piezoelectric
constant is situated between those of the dielectric and

elastic constants. The reason of using two iterations is
that the first iteration provides only the elastic constants
with relative high accuracy and therefore a second
iteration is necessary to improve the accuracy of the
dielectric and piezoelectric constants.
The algorithm of this method was written in Mathema-

tica 3.0, which allows an easy manipulation of complex
functions with complex variables.

4. Results and discussion

The new method was tested on the following types of
materials: soft PZT (denoted material A), lead meta-
niobate (material B), hard PZT (material C) and bis-
muth niobat (material D), covering a wide range of
values of the planar coupling factor (kp= 2.5–57%) and
mechanical quality factor (Qm=20–3000). Each type of
material was simulated by giving complex values to
material constants "T33; d31; c

p
11 and �, considered as

input constants, and then by generating the admittance
data using Eq. (5). The new method, together with
Smits’ and Alemany’s were applied to the generated
admittance data, considered as experimental (input)
resonance spectrum, in order to calculate the material
constants and to compare them with their input values.
The accuracies of the real and imaginary parts of

each material constant were calculated by the following
relationships:

"const0 ¼
const0i � const0c
�� ��

const
0

i

�� �� ð17Þ

and

"const ¼
const0i � const0i
�� ��

const0i
�� �� ð18Þ

where subscripts ‘‘i’’ and ‘‘c’’ designate the input and
calculated constants, respectively and single and double
primes signify the real and imaginary parts, respectively.
The resonance spectra were generated for disc shaped

resonators of 20 mm in diameter and 1mm thickness, by
using a program in Mathematica 3.0. The frequencies
fs; fp; fBmax; fBmin and fs2 were determined with high
accuracy (10�8%) by this program. The programs for
the three methodes were also made in Mathematica 3.0.
Table 1 shows the input constants for materials A–D

and input kp and Qm calculated with input constants by
formula (9) and the following one:

Qm ¼ �
c
p0

11

c
p00

11

ð19Þ

Input constants were chosen in agreement with the
following constraints, found by Holland:4
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"T33
� 00

5 0

sE11
� 00

5 0

sE11
� 00

5 sE12
� 00��� ���

"0 sE11
� 00

"T33
� 00

5 d
0

31

� 2

9>>>>>=
>>>>>;

ð20Þ

Material constants determined by the new method
were also in agreement with constraints (20). They were
substituted in Eq. (5) to obtain calculated (output)
admittance data, in the range of resonance–anti-
resonance of fundamental radial mode, in order to
compare them to generated admittance data. The aim of
the method is that output data reproduce as much as
possible the input data.
Figs. 1A–D show the real and imaginary parts of the

generated and calculated admittance and impedance, as
a function of frequency, in the range of resonance and
antiresonance of the fundamental radial mode, for
materials A–D, respectively. One can see that output
and input data are in very good agreement, for all
materials.
Table 2A–D shows the accuracies of the material

constants, of the radial mode, determined by the three

mentioned methods, for materials A–D, respectively. The
coupling factors kp and k31, the piezoelectric constant g31
and the elastic compliances sE;D11 and sE;D12 at constant E
(electric field) and constant D (dielectric displacement)
were determined from the previous constants.
Since the accuracy of Smits’ method is drasticaly

influenced by the choice of frequencies f1,2, we used
three pairs of such frequencies to test it: f1,2eff [see Eq.
(1)] and f1,2st and f1,2d, given by:

f1;2st ¼
fsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� kpst
p ð21Þ

and

f1;2d ¼
fsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� kpd
�� ��q ð22Þ

where kpst is the planar coupling factor calculated
according to IEEE Std.1 and kpd is the input planar
coupling factor given in Table 1. We have found prac-
ticaly the same accuracy for all these frequencies. This
was valid for each of materials A–D. We have also

Fig. 1A–D. Resonance (a) and antiresonance (b) generated and calculated spectra of the fundamental mode for materials A, B, C and D,

respectively.
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chosen some other frequencies to test the accuracy of
Smits’ method and we found larger errors than for f1,2eff,
f1,2st and f1,2d, which seem to give the best accuracies.
This could be explained by the analogy of their defini-
tions with the formula for the frequencies associated with
maximum piezoelectric energy content.7 Therefore, we
selected only the frequencies f1,2eff to use as f1,2 in Smits’
method, since they are easier determined, thus simplifying
the use of this method.
As one can see from Table 2A–D, the new method as

well as Alemany’s have almost the same accuracy for all
investigated materials. This accuracy is also the same with
Smits’, only for materials A and B, withmoderate and low
Qm. For material C, with large kp and high Qm, the two
methods are more accurate than Smits’, providing lower
errors for the imaginary parts of the piezoelectric and
elastic constants and coupling factors. For material D,
with very small kp and high Qm, Smits’ method seems to
be more accurate, especially for the imaginary parts of
the constants and coupling factors. The results proved
that all three methods have similar accuracies. This is
natural, since they are all based on the same algorithm.
Even if our method proved to be as accurate as the
others, or even more, for materials with large kp, it has
the main advantage of being easier to use, by providing

a simple and rapid technique of measurement, which
can be completely separated from the program for
determining the material constants. The principle of this
method can be also used for other resonant modes.
The imaginary parts of the material constants were

usualy obtained with larger errors, up to one order of
magnitude, than the real parts. The imaginary part of s
was given with very large errors, by all three methods,
for materials A and B. This is due to the fact that the
imaginary part of this constant, which is determined
from the elastic term of the admittance [Eq. (5)], has a
very small contribution to this term, thus being difficult
to be accurately determined. For material B, with high
losses, c

p
11 as well as the other elastic constants, is given

with rather large errors, probably due to the initial esti-
mation of its imaginary part, by Eq. (14), which is no
longer valid for high mechanical losses, as one can see in
Table 1, where the difference between input Qm and the
ratio fs=ð fBmin � fBmax) is about 40%. For each of the
other materials, with low losses, the two quantities have
almost the same values, differing by less than 1%.
Sherrit et al.10 explained this by giving a new definition
of these frequencies. They defined the series and parallel
resonance frequencies as the frequencies corresponding
to maxima of the real parts of Y( f )/f and f.Z( f ),

Fig. 1A–D (continued).
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Table 2

A–D. The accuracies of the material constants of the radial mode determined by the new method and comparatively by Smits’ and Alemany’s

methods, for the four materials A, B, C and D, respectively

Constant Accuracy (%)

Alemany’s method Smits’ method New method

A

"T33="0 Real 2�10�4 10�4 1.4�10�4

Imag. 0.002 0.002 0.0008

d31 Real 2.5�10�4 2�10�4 2�10�4

Imag. 0.003 0.003 0.003

c
p
11 Real 0.005 0.005 0.005

Imag. 0.1 0.1 0.1

� Real 0.02 0.02 0.02

Imag. 100 100 100

kp Real 0.001 0.001 0.0009

Imag. 0.04 0.04 0.03

sE11 Real 0.01 0.01 0.01

Imag. 0.3 0.3 0.3

sE12 Real 0.03 0.03 0.03

Imag. 0.8 0.8 0.8

sD11 Real 0.014 0.01 0.01

Imag. 0.4 0.4 0.4

sD12 Real 0.03 0.03 0.03

Imag. 0.5 0.5 0.5

k31 Real 0.006 0.006 0.006

Imag. 0.2 0.2 0.2

g31 Real 4�10�4 3�10�4 3�10�4

Imag. 0.04 0.04 0.03

B

"T33="0 Real 5�10�5 6�10�5 5�10�5

Imag. 0.0009 0.004 0.0008

d31 Real 2.5�10�4 2�10�4 2�10�4

Imag. 0.2 0.2 0.2

c
p
11 Real 0.1 0.1 0.1

Imag. 1.5 1.6 1.5

� Real 1 1 1

Imag. 80 80 80

kp Real 0.02 0.02 0.02

Imag. 0.5 0.5 0.5

sE11 Real 0.2 0.2 0.2

Imag. 2 2 2

sE12 Real 1 1 1

Imag. 13 13 13

sD11 Real 0.2 0.2 0.2

Imag. 2 2 2

sD12 Real 1 1 1

Imag. 13 13 13

k31 Real 0.1 0.1 0.1

Imag. 3 3 3

g31 Real 0.003 0.003 0.003

Imag. 1 1 1

C

"T33="0 Real 7�10�5 6�10�5 6�10�5

Imag. 4�10�4 6�10�4 4�10�4

d31 Real 10�4 10�4 10�4

Imag. 0.7�10�4 2�10�4 0.6�10�4

c
p
11 Real 0.002 0.002 0.002

Real 0.005 0.005 0.005

� Imag. 0.013 0.013 0.013

Real – – –

kp Imag. 5�10�4 5�10�4 4�10�4

Real 0.0002 0.002 0.0002

(continued on next page)
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respectively and not to the real parts of Y( f )/f and
f.Z( f ) as in IEEE Std.1 They also defined fBmax and
fBmin as the extrema of Y( f )/f The difference between
the two definitions is only significant for materials with
low Qm, which is defined as the ratio of the real to ima-
ginary part of the elastic constant. If the frequencies are
defined according to Sherrit et at, for material B, the
values of Qm, and of the ratio fs/( fBmin–fBmax) will be
almost equal and thus the relationship (14) becomes
valid again. Besides, using the new definitions of the
frequencies, in formulas (11)–(14), for the initial esti-
mations of � and c

p
11, the errors of the real parts of cal-

culated constants and coupling factors are about one
order of magnitude lower than in the case of using the
standard defined frequencies. Therefore, when low Qm

materials are characterized, the frequencies used for
initial estimations of the elastic constants are recom-
mended to be chosen according to their new definitions.

5. Conclusions

A new iterative method, for determining the dielectric,
piezoelectric and elastic constants, in complex form, for
the piezoceramic materials, in the radial mode, was
proposed. This new method is valid even for materials
with very poor resolution between resonance and anti-
resonance. It consists in two successive iterations, based
on the measurement of the electrical admittance at five
properly chosen frequencies, determined by the pro-
gram for data acquisition. Two of these frequencies are
calculated using only the other ones, by a new simple
relationship, provided by this method, without requir-
ing intermediate results of the iterations, as Alemany’s
method does. This allows the separation between the
programs for data acquisition and processing, thus
reducing the acquisition time. This separation is also
possible, since no further measurements are necessary,

Table 2 (continued)

Constant Accuracy (%)

Alemany’s method Smits’ method New method

sE11 Imag. 0.005 0.005 0.005

Real 0.0006 0.02 0.0006

sE12 Imag. 0.02 0.02 0.02

Real 0.002 0.07 0.002

sD11 Imag. 0.006 0.006 0.006

Real 0.001 0.03 0.001

sD12 Imag. 0.013 0.013 0.01

Real 0.001 0.03 0.0008

k31 Imag. 0.002 0.0025 0.002

Real 0.00004 0.008 0.00006

g31 Imag. 2�10�4 2�10�4 2�10�4

Real 4�10�4 8�10�4 3�10�4

D

"T33="0 Real 3�10�5 0.3�10�5 4�10�5

Imag. 0.004 0.0003 0.005

d31 Real 10�4 10�4 10�4

Imag. 0.02 0.002 0.02

c
p
11 Real 0.005 0.005 0.005

Imag. 0.08 0.004 0.08

� Real 0.03 0.03 0.03

Imag. – – –

kp Real 7�10�4 8�10�4 7�10�4

Imag. 0.03 0.003 0.04

sE11 Real 0.009 0.009 0.009

Imag. 0.1 0.02 0.1

sE12 Real 0.04 0.04 0.04

Imag. 0.6 0.1 0.6

sD11 Real 0.009 0.009 0.009

Imag. 0.13 0.03 0.1

sD12 Real 0.04 0.04 0.04

Imag. 0.6 0.1 0.6

k31 Real 0.004 0.004 0.004

Imag. 0.1 0.001 0.1

g31 Real 0.7�10�4 10�4 0.6�10�4

Imag. 0.006 0.0004 0.008
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during the calculation of the material constants and this
is the main benefit from this new method.
The new method was compared with other iterative

methods, by determining their accuracies for several
types of materials. It was found that all methods have
similar accuracies, but ours is more rapid and easiear to
apply and it provides higher accuracy for materials with
large planar coupling factors.
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